Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dent ; 142: 104854, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246309

ABSTRACT

PURPOSE: To measure the impact of the scanning distance on the accuracy of complete-arch implant scans acquired by using a photogrammetry (PG) system. MATERIAL AND METHODS: An edentulous cast with 6 implant abutment analogs was obtained. A brand new implant scan body was positioned on each implant abutment and digitized using an extraoral scanner (T710; Medit) and the reference file was obtained. Three groups were created based on the scanning distance used to acquire complete-arch implant scans by using a PG (PIC System; PIC Dental): 20 (20 group), 30 (30 group), and 35 cm (35 group). An optical marker (PIC Transfer, HC MUA Metal; PIC Dental) was placed on each implant abutment and a total of thirty scans per group were acquired. Euclidean linear and angular measurements were obtained on the reference file was obtained and used to compare the discrepancies with the same measurements obtained on each experimental scan. One-way ANOVA and Tukey tests were used to analyze trueness. The Levene test was used to analyze the precision values (α = 0.05). RESULTS: Significant linear (P < .001) and angular trueness (P < .001) discrepancies were found among the groups. For linear trueness, Tukey test showed that the 20 and 30 groups (P < .001) and 30 and 35 groups were different (P < .001). For angular trueness, the Tukey test revealed that 20 and 30 groups (P = .003), 20 and 35 (P < .001), and 30 and 35 groups were different (P < .001) The Levene test showed no significant linear precision (P = .197) and angular discrepancies (P = .229) among the groups. CONCLUSIONS: The scanning distance influenced the trueness of complete-arch implant scans obtained with the PG method tested. The maximum linear trueness mean discrepancy among the groups tested was 10 µm and the maximum angular trueness mean discrepancy among the groups tested was 0.02 .


Subject(s)
Dental Implants , Mouth, Edentulous , Humans , Dental Impression Technique , Models, Dental , Computer-Aided Design , Imaging, Three-Dimensional
2.
J Prosthet Dent ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38267350

ABSTRACT

STATEMENT OF PROBLEM: Photogrammetry has been reported to be a reliable digital alternative for recording implant positions; however, the factors that may impact the accuracy of photogrammetry techniques remain unknown. PURPOSE: The purpose of this in vitro study was to assess the influence of the implant reference on the accuracy of complete arch implant scans acquired by using a photogrammetry system. MATERIAL AND METHODS: An edentulous cast with 6 implant abutment analogs (MultiUnit Abutment Plus Replica) was obtained and digitized by using a laboratory scanner (T710; Medit). A photogrammetry system (PIC System) was selected to obtain complete arch implant scans. An optical marker (PIC Transfer, HC MUA Metal; PIC Dental) was positioned on each implant abutment of the reference cast. Each optical marker code and position was determined in the photogrammetry software program. Three groups were created based on the implant reference selected before acquiring the photogrammetry scans: right first molar (IPR-3 group), left canine (IPR-11 group), and left first molar (IPR-14 group) (n=30). Euclidean linear and angular measurements were obtained on the digitized reference cast and used to compare the discrepancies with the same measurements obtained on each experimental scan. One-way ANOVA and the Tukey tests were used to analyze the trueness data. The Levene test was used to analyze the precision values (α=.05 for all tests). RESULTS: One-way ANOVA revealed significant linear (P=.003) and angular (P=.009) trueness differences among the groups tested. Additionally, the Tukey test showed that the IPR-11 and IPR-14 groups had significantly different linear (P<.001) and angular trueness (P<.001). The Levene test showed no significant precision linear (P=.197) and angular (P=.235) discrepancies among the groups tested. The IPR-3 group obtained the highest trueness (P<.001) and precision (P<.001) values among the groups tested. CONCLUSIONS: Implant reference impacted the accuracy of complete arch implant scans obtained by using the photogrammetry system tested. However, a trueness ±precision linear discrepancy of 6 ±3 µm and an angular discrepancy of 0.01 ±0.01 degrees were measured among the groups tested; therefore, the impact of the discrepancy measured should not be clinically significant.

3.
J Indiana Dent Assoc ; 92(1): 5-7, 2013.
Article in English | MEDLINE | ID: mdl-24159678
SELECTION OF CITATIONS
SEARCH DETAIL
...